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Fermilab Electron Cooling Project: Estimates
for the Cooling Section Solenoid

S. Nagaitsev, A. Shemyakin, Fermilab, USA
V. Vostrikov, Budker INP, Novosibirsk, Russia

1. Introduction

A final goal of the Electron Cooling R&D efforts at Wide Band building is a
round electron beam with a kinetic energy of 4.3 MeV propagating through a cooling
section with transverse angles below 1⋅10-4 rad [1]. The latter requirement is important
because electrons with angles above this critical value have a reduced cooling ability.
Electron angles in the cooling section largely depend on the magnetic field quality. The
goal of this work is to analyze possible perturbations of the magnet field and their
influence on electron motion. Such an analysis must be done to choose the solenoid
design and the winding technology.

The proposed cooling section consists of ten modules equipped with identical
solenoids. Some parameters of a solenoid module are shown in Table 1.

Table 1: The basic parameters of the cooling section solenoids.

Parameter Symbol Value Units
Solenoid length ls 190 - 196 cm
Solenoid ID 2a 15 cm
Magnetic field B0 50 - 150 G

Neighboring solenoids are divided by a gap where a vacuum pump port, scrapers,
and BPM feedthroughs are placed. Effects of magnetic field perturbation because of gaps
and because of winding errors in the homogeneous part of solenoids are considered
separately in Sections 2 and 3, respectively.

The consideration is limited to a case of an initially “cold” electron beam in which
all electrons enter the cooling section parallel to its axis. This model can be used because
all perturbation effects must be small and, therefore, linear expansions are valid. The
linearity gives also a possibility to discuss separately different sorts of perturbation.

In this paper, we assume that an angle acquired by an electron because of passing
through a specific perturbation has to be below 2⋅10-5 rad while an angle inside a
perturbed region should be kept under 7⋅10-5 rad. In this case, full electron angles might
be under boundary of ineffective cooling (1⋅10-4 rad).

All estimations were done for the magnetic field strength of 150 G and the initial
electron radius of 5 mm. Gaussian units are used. Numerical simulations of magnetic
fields and single particle motion were done by the computer code SAM 3-0 [2].
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2. Effects of a gap

2.1 General consideration

First, we consider the effects of longitudinal field variations caused by a gap
between solenoids.

The electron Larmor oscillation period in the cooling section is 6.3 – 20 m while
the gap size is much smaller (6 – 10 cm). Typical magnetic field distribution along the
z-axis is shown for a gap in Fig. 1. In this case, the gap between solenoids generates an
angular perturbation similar to a thin lens. A radial angle δr′out acquired while traversing
the gap can be found from the equation of the particle motion in an axially symmetric
magnetic field [3]:
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where  ρL � PF
2/eB0  is the Larmor radius,  and  Y�F�are the usual Lorentz factors,

B(z) and B0  are magnetic fields inside the gap and in the homogeneous part of the
solenoid, respectively.
   In a case of a paraxial motion and a thin lens approximation (r ≈ r0 inside the gap), the
acquired angle is
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Figure 1: The longitudinal field on-axis in a gap between two semi-infinite solenoids as a
function of z coordinate. Curves 1 and 2 show results for 6 and 10 cm gaps, respectively.
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  After passing through the gap an electron begins to spiral so that the total
transverse velocity is constant. Fig. 2 shows the total electron angle, given by
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along the trajectory for the case of 6 and 10 cm gaps. Two separate effects can be
distinguished.

First of all, after passing the gap region, an electron has an angle θout more than
the critical value. To correct the angle, one can add short solenoids (correctors) near the
gap so that
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and the total angle is zero inside the next downstream part of the main solenoid. The
angle is precisely compensated for one trajectory; a residual transverse motion of
electrons persists at other radii because of non-linear field components.

Figure 2: The total angle acquired in the gap by an electron at r = 5 mm. Curves 1 and 2
show results for 6 and 10 cm gaps, respectively.  The solid line indicates the critical angle
of 7×10-5 rad.

Let us estimate a restriction on the corrector currents due to condition (4). The
gap is equivalent to a superposition of a homogenous solenoid and a short solenoid with a
length equal to the gap size  and the current of  (-j0Â �� where j0 is the linear solenoid
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current density (in Amp⋅turns/cm). The field perturbation is a sum of this short solenoid
field B1 and the corrector fields Bi

( ) ( ) ∑+=−=
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where Ii are the currents of the correctors. Taking into account eq. (6), condition (4) can
be rewritten as follows:
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Here <∆B> is a rms. value of the field perturbation over the gap. Eq. (7) gives us the
restriction for corrector currents
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In the practically interesting case of a low field perturbation, <∆B> << B0,
δ⋅=∑ 0jI

i
i (9)

with a precision sufficient for our purpose. The meaning of eq. (9) is quite simple. To
have no focusing effects in the gap in the first order, it is enough to keep average density
of Ampere-turns in the gap equal to that of the regular part of the solenoid.

The second harmful effect of a gap is an azimuthal angle, ϕ, which electrons
have inside the gap. If  ∆B << B0,
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The restrictions for these two angles ( ϕ and θout) vary.  The remaining total
angle, θout, contributes to a motion downstream of the gap and has to be lower than 2⋅10-5

rad. The angle θϕ exists inside the perturbed region only and disappears when B→B0.
It can not be set to zero in the gap, and the critical value of 7⋅10-5 rad determines the
length, Lg, of a region around the gap where the cooling is ineffective because of large
azimuthal velocities.

Two possible solutions for decreasing both the angles after passing the gap, θout,
and the length, Lg, of the region where cooling is ineffective were considered. Namely,
(1) two pairs of correction coils without a magnetic shield and (2) one pair of coils with a
shield. These variants were simulated numerically. In the simulations, electron started
from the middle of a 2 m solenoid at radius of 5 mm parallel to the axis, and tracking was

stopped inside the next module when the angle θt became constant (θt =θout). All
simulations were done for B0 = 150 G.
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2.2 Two pairs of correction coils

The first set of simulations was done for a case of solenoids without any magnetic
shielding. To correct the field perturbation, two solenoidal coils were placed on both
sides of the gap. The results of simulations are similar for various coil locations: inside
the main solenoid, outside of it or made as part of the main solenoid  (see Fig.3). The
geometry is symmetric with respect to the central plane of the gap.

Figure 3: The geometry of the gap with two pairs of correction coils.

Figure 4: The total angle θout after passing a 6 cm gap as a function of current in inner
coils. The current in each of outer coils is –0.32 kA.
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The current direction in coils nearest to the gap is the same as in the main
solenoid. The coils increase the magnetic field strength inside the gap. The second pair of
coils has an opposite sign of current. These coils decrease a field maximum under the
first correction coils.

Fig. 4 shows the total angle θout as a function of current in the inner coils at a
constant current in the second pair of correction coils. Values of currents corresponding
to a zero θout are in good agreement with equation (9).

The curve in Fig.4 was calculated for an electron at a 5 mm radius. Angles
acquired by electrons at different radii are shown in Fig.5 for the corrector currents that
correspond to θout =0 at r = 5 mm. These angles are determined by spherical aberration,
and the curve fits a cubic function,

3rCsout =θ (11)

with Cs being 3.1Â��-7 cm-3. The aberrations are lower than the precision of the simulation
at r<10 mm and are negligible for our purposes.

Figure 5: The total angle θout after passing a 10 cm gap as a function of the electron
radius. Currents in the correctors are 2.5 and -1.9 kA.

The next step is to minimize the length Lg of a region around the gap where the
cooling is ineffective because of large azimuth velocities (>7⋅10-5 rad at the 5 mm radius).
Fig. 6 shows the length Lg as a function of the inner coil current. Note that the simulation
was done for the case of θout=0, and the current in the second pair of coils was calculated
from equation (9). Fig. 7 shows absolute values of the azimuthal angle for the case of
optimum corrections. The angles were found to be below 7⋅10-5 rad over all the gap at
optimum correction currents so that Lg =0 (See Fig. 8.). Corresponding field distribution
along the axis is presented at Fig. 9. These results are summarized in Table 2.
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Figure 6: The length Lg as a function of the current in the inner coil while θout=0. The
gap size is 10 cm .

Figure 7: The azimuthal angle (absolute value) as a function of the longitudinal
coordinate. Gap size is 10 cm, currents of correctors are I1 = 2.5 and I2 = – 1.9 kA.
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Figure 8: The azimuthal angle (absolute value) as a function of the longitudinal
coordinate. Gap size is 6 cm; currents of correctors are 1.04 and –0.69 kA.

Figure 9: The longitudinal magnetic field as a function of z-coordinate for the case of
optimum corrections (see Table 2). Solid and dash curves correspond to 6 and 10 cm gaps
sizes, respectively.
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Table 2: The optimum settings of correctors. The setting #2 is a compromise between the
perturbation length and a value of corrector currents.

Setting
#

Gap size

,  cm

Current in inner
coil, kA

Current in outer
coil, kA

Length of
perturbation

Lg, cm

1 6 1.04 -0.68 0

2 10 1.5 -0.9 8

3 10 2.5 -1.9 0

2.3 Pair of correction coils with a magnetic shield

Figure 10: The simulated geometry of the gap effect compensation by a pair of coils and
a magnetic shield.

The design discussed above needs an adjustment of two pairs of coils and a
comparatively high value of their currents. A simplification can be made by a use of a
magnetic shield protruding inside of the solenoid (Fig. 10). In this case, the coil currents
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have to satisfy the equation (9) while the length d of the shield protrusion is the parameter
which can be varied to optimize the length Lg of the ineffective cooling region.

Simulations similar to those described in the previous section were performed.
Results for two gap sizes are presented in Table 3. The permeability of the magnetic
shield was taken to be equal to 1000. Figures 11 and 12 show the field and angle
distributions along the z-coordinate. The minimum perturbation length, Lg,  is 8 cm for
the 10 cm gap, which is still much less than the full length of the module (2 m).

Table 3: The length of perturbation for optimum parameters of the design with a shield
 

Gap size

, cm

Coil current,
kA

Protrusion length
d,   mm

Length of
perturbation

Lg, cm

6 0.604 0 ~1

10 0.865 5 8

Figure 11: The longitudinal magnetic field as a function of z coordinate. The solid and
dash curves correspond to the 6 and 10 cm gaps respectively.
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Figure 12: The azimuthal angle in the gaps (absolute value) with the optimum
adjustment of magnetic shield geometry and the correction coil currents.
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3. Magnetic field perturbations inside the solenoid

3.1 Single-coil solenoid design

The solenoid can be manufactured as a single coil (Fig.13). Some of its
parameters are listed in Table 4.

Figure 13: The cooling section solenoid module. 1- inner aluminum tube, 2- outer
aluminum tube, 3- gap correctors, 4- dipole correctors layer, 5- µ-metal shield, and 6-
iron magnetic shield.

Table 4: Proposed parameters of the module solenoid.

Number of layers 6

Number of turns in one layer 1000

Wire diameter 2 mm

Current for B=150 G 4 A

Total weight 250 kg

Power 240 W

It is proposed to wind the solenoid around a 6” OD aluminum tube with a 2- mm
diameter copper wire. The low wire diameter helps to maintain a good precision of
winding; moreover, an increased number of turns averages out field errors caused by
deviations of wire positions from an ideal spiral. The chosen wire size is a compromise
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which gives an acceptable total voltage drop over ten solenoids connected in series. We
prefer to make an even number of layers to avoid problems with a current return path.

The main parameter determining solenoid quality is the magnitude of transverse
components of the magnetic field. An electron propagating through a short region with a
dipole field B⊥ acquires an angle dθ :

∫ ⊥⋅= dzB
B l

d ρ
θ

0

1
. (12)

The shortest scale of dipole field variations is the solenoid diameter, which is much larger
than the beam size. Therefore, the field effects are nearly identical for all electrons in the
beam, and we can consider only the motion of an electron entering the solenoid on axis.

The restriction to such perturbations is the same as was discussed in Section 1,
namely, an electron angle should never exceed 7⋅10-5 rad. For an electron with kinetic
energy of 4.3 MeV, this angle corresponds to an integral of the dipole field of 1 GÂFP�

All perturbations exceeding this level should be corrected by dipole coils placed over the
solenoid body. Note that this scheme assumes that angles at the entrance and exit of every
module are low. Analogously to Section 2, the limit for the angles is taken equal to 2⋅10-5

rad.
A dipole field of any realistic distribution can be compensated by a system of

dipole correctors. The main questions for this section are: (1) what is the minimum
number of the correctors and (2) how strong they have to be for practically achievable
tolerances of solenoid manufacturing?

One of the dangerous perturbations for the future electron cooling device is a
time-dependent dipole field from the Main Injector current buses. A typical size of the
fringe fields is several meters. To preserve electron angles, resulting from these fields,
under 2⋅10-5 rad, the cooling section should be magnetically shielded with restriction for a
residual field value of about 1 mG. We intend to use a two-layer magnetic shield: a thin
inner soft-iron layer and a thicker outer magnetic steel tube, which works also as a flux
return. Detailed calculations and the shield design are still ahead and will not be
considered in this paper.

Below we discuss ways to correct solenoid misalignments, mechanical distortions
of the solenoid body, and winding errors.

3.2 Perturbations because of misalignments

Suppose that all module solenoids but one are well aligned with respect to an axis
and an electron beam propagates along that same axis. The considered solenoid can be
inclined and shifted.

In the paraxial approximation, the transverse magnetic field components 1⊥B
r

 near

the entrance of a solenoid are proportional to the distance 1

→
r  from its axis. The fields of

the solenoid, shifted by ∆, can be presented as a sum of fields of a well-aligned solenoid,

0⊥

→
B , and a dipole:

→

⊥

→→→→

⊥

→
∆⋅+=∆+⋅=⋅= kBrkrkB 011 )( , (13)



14

where 
dz

dB
k z

2

1−= . The angle ∆θ , which an on-axis electron acquires in this case, is

equal to the one appearing if a non-magnetized electron shifted from the axis by ∆ enters
an aligned solenoid:

Lρ
θ

2

∆=∆ . (14)

To avoid this effect (i.e. ∆θ <2⋅10-5 rad), solenoids should be aligned to within 0.02 mm.

The inclination of a solenoid by an angle αi also induces a transverse component
equal to αi ⋅B0. The resulting electron angle is less than 2⋅10-5 rad, if αi ⋅<1⋅10-5 rad.

Both restrictions seem to be severe for mechanical alignment, but can be satisfied
with the use of correction dipole coils. An inclination can be corrected by a pair of X and
Y coils placed along the whole solenoid, and short coils near the solenoid exit can correct
a shift of axes. The question of how to measure these misalignments with a necessary
precision is very important, but it is outside the scope of this paper.

3.3 Mechanical distortion

The solenoid body can be distorted because of its weight and length. Supporting
the body with a precision of tens micrometers during winding seems to be too expensive
in comparison with adding dipole correctors. To estimate how strong these effects could
be, let us consider an extreme case: the whole weight of the solenoid module wound on a
6” OD, 5.5” ID aluminum tube is supported in two points at its ends. For parameters
listed in Table 4, the sag t in the middle is about 0.4 mm. Suppose, that the bend is
parabolic and the magnetic field follows the curved mechanical axis.  Then the resulting
vertical magnetic field is linear with the axial coordinate z:

s

s
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BzB

−
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where 12.0
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0max =⋅=⊥ B
l
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B

s

 G, ls = 200 cm is the solenoid length, and z is counted from

the end of the solenoid. The integral of yB over the solenoid is equal to zero; however,

the electron angle in the middle of the solenoid, midθ , is about 4.2Â��-4 rad.

We can place dipole correctors evenly along the solenoid and adjust their fields
Bcor so that the resulting transverse field in the middle of every corrector (By + Bcor) is
zero. Because of the linearity of By (z), the angle is canceled at the end of correctors and
has the maximum, corθ , in the center of a corrector:
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where  z1 is counted from a corrector edge, L is a corrector length, and 
L

l
N s

cor =  is a

number of correctors. Obviously, the total number of correctors has to be even. For
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Ncor=4, the angle =corθ  2.6Â��-5 rad. Therefore, four pairs of correctors seem to be

sufficient to correct mechanical distortion of the solenoid body.

3.4 Winding errors.

Winding errors, or deviations of winding from an ideal spiral, seem to be the most
fundamental factor determining the solenoid field quality. We will estimate the effects of
winding errors in the framework of a model where the solenoid is represented by a set of
identical thin closed-loop coils with current equal to the solenoid current. The radius of
the coils is equal to the average solenoid radius, and the number of coils is the same as
the total number of turns in the solenoid. The ideal winding corresponds to coaxial coils
evenly distributed along the solenoid length.

Three types of errors are considered below: random shifts of coils in the
transverse direction, their random tilt, and a non-uniformity of the coil distribution along
the solenoid.

The paraxial approximation of the magnetic field of a separate unperturbed coil is
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where z is counted from the coil center, a is a radius of the coil, and I is the coil current

[4]. If one coil is shifted in the x direction by δx, an x- component of the field shiftxB )
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The angle, θshift_0, of an electron trajectory arising from this shift has a maximum in the
center of the coil,
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where Neff is the number of turns on the length equal to the solenoid diameter 2a. The
resulting angle after passing through such a coil becomes much less  than  θshift_0  at z> a

so that the total angle because of all randomly shifted coils θshift  is about effN  times

larger:

 
effL

effshiftshift
N

x
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20_ ⋅≈⋅≈
ρ
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The calculation is similar for the case of randomly tilted coils. The x- component
of the field of a coil tilted by α in the xz-plane is
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where z is in non-rotated coordinates. The angle after passing through the coil is
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where ∆ is the relative shift of coil ends. The result for the case of all coils tilted by an
angle  with a random sign is higher by about the square root of the total number of coils

in the solenoid, which is )
2

(
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l
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This angle exceeds the one caused by shifts (see (19)) by a factor of  
a

ls

2
2 ⋅ ≈7 for the

same precision of winding.

Figure 14: A typical behavior of the transverse magnetic field along the longitudinal
coordinate. The simulation was done for 6000 coils of 15 cm diameter, evenly distributed
from 0 to 200cm. The coils are randomly inclined by angles having a Gaussian
distribution with a standard deviation of 0 =5Â��-4 rad. The longitudinal magnetic field is
150 G.

The effect of tilted coils was also examined by a computer simulation for
parameters listed in Table 4. The coil incline angles had a random Gaussian distribution
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with a standard deviation 0 and the transverse field was calculated by the formula (20).
The resulting electron angle was calculated by a numerical integration of the field
without taking into account Larmor rotation. Figures 14 and 15 show typical distributions
of the transverse magnetic field and the electron angle along the solenoid, respectively,
for 0=5Â��-4 rad. Typically, the transverse magnetic field is less than 10 mG and the
maximum angle is about 3Â��-5 rad. The latter is in reasonable agreement with the value
of 1.3Â��-5 rad given by the formula (22) for the same parameters and = 0=5Â��-4 rad.
Linearity of the model results in a linear dependence of the resulting angle on a value of

0. Therefore, the maximum electron angle is less than 7Â��-5 rad for the value of 0 up to
1Â��-3 rad.

The restriction on the winding precision can be relaxed further by using dipole
correctors so that the integral of the resulting transverse field over the length of every
corrector is zero. The maximum angle is anticipated to be somewhere close to centers of

correctors and, therefore, can be estimated as 
cor

tilt

N2

θ
. To provide the maximum electron

angle of below 7Â��-5 rad at Ncor = 8, the inclination� 0 should be no more than 4Â��-3 rad
which corresponds to the winding precision of  ±0.6 mm.

Figure 15: The total angle acquired by an electron in the field shown in Fig.14.

The last winding error we consider is a non-uniformity of the longitudinal coils
distribution. If the full number of Ampere-turns in the module is fixed, the resulting angle
after passing the entire module is very low (see formula (8)). The resulting azimuthal
velocity can be estimated by the formula (10). To keep the electron angle under 7Â��-5

rad, the magnetic field value and the solenoid current density should be homogeneous
with the precision of 2.8%.

θ t

z ,  c m
- 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 1 . 5 • 1 0 - 5

0

- 1 • 1 0 - 5

1 . 5 • 1 0 - 5

2 • 1 0 - 5

- 5 • 1 0 - 6

5 • 1 0 - 6

1 • 1 0 - 5

2 . 5 • 1 0 - 5
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 3.5. Sectioned solenoid module

The rather loose restriction on the longitudinal magnetic field homogeneity
(2.8%) makes it possible to design a solenoid module consisting of a number of shorter
coils. The coils are placed evenly along the module length, and the average current
density is the same as that of a solid module. Possible parameters of such a design are
listed in Table 5.

Table 5: Parameters of a sectioned module.

Number of layers                        6

Number of turns in one layer                    ~100

Section length ~20 cm

Wire diameter                      2 mm

Current                       4 A

Weight of copper                     14 kg

Gap size                      5 mm

Power                      25 W

The gaps between coils have to be small enough to avoid inducing azimuthal
velocities. Computer simulations analogous to those made in Section 2 were performed
for the design. With the restriction of 7Â��-5 rad for the electron angle, the gap size can be
up to 5 mm, which is sufficient for current leads etc. To compensate for the possible
inclination of the coils, each of them needs a pair of dipole correctors.

4. Conclusion

The restrictions for the solenoid field quality are found to be quite different from
those for traditional low-energy electron coolers. The fundamental distinction is based on
a simple fact that excitation of an electron velocity, transverse to magnetic lines, by a
perturbation in a solenoidal field is maximum when the length of the perturbation, Lp, is
about the Larmor period, λ=2π⋅ρL= 2π⋅ PF

2/eB0. As a rule, a typical Lp value is close to
the solenoid diameter.

Having the solenoid diameter of 30- 50 cm and λ∼1- 3 cm << Lp, low-energy
coolers keep a low beam temperature due to the adiabaticity of the electron motion. In
this case, the excitation of transverse electron velocities is suppressed dramatically with
the increase of both the magnetic field and the solenoid diameter and decrease of the
electron energy. Electrons strictly follow the magnetic field lines so that deviations of
their trajectories from straight lines are determined by local values of the transverse
components of the magnetic field.

In contrast, the worst case for the Fermilab’s cooler, with the solenoid diameter of
15 cm and λ∼100- 300 cm >> Lp, is at the maximum value of the longitudinal field.
Electron angles are formed by the integral of transverse magnetic field components so



19

that averaging of them along the axis is essential. Only the mean winding density must be
the same in the solenoid to keep the angles below the critical value. The low strength of
the magnetic field makes it possible to drastically decrease the size of the wire, which
improves the precision of winding and averages out winding errors better because of an
increased number of turns.

These distinctions demand a special consideration of the solenoid design and
estimations made above. The main specific conclusions are as follows:
1. For proposed solenoid parameters listed in Table 1, the harmful effects of the gap

between solenoids can be compensated by two pairs of solenoidal coils or by one pair
and a disk-shaped magnetic shield.

2. The excited electron angle remaining after passing the gap is low if the total number
of Ampere-turns in the correction coils is equal to the number of Ampere-turns
missing from the solenoid because of the gap.

3. The length of the region of ineffective cooling caused by a gap can be made less than
5% of the total solenoid length if the gap length is 10 cm or lower.

4. The magnetic field quality in the homogeneous part of a module is determined mainly
by mechanical distortions of the solenoid body and by possible inclinations of
individual turns. Using 8 pairs of dipole correctors per 2 m module, we can achieve
the desired magnetic field quality with the precision of wire positioning of  ±0.6 mm.

5. The corrector adjustment has to decrease the transverse field integral under every
corrector to below 0.3 G⋅cm to keep the electron angle change less than 2Â��-5. With
the corrector length of 25 cm, this value of the integral corresponds to about 12 mG
of an average transverse field. The necessary precision of transverse field
measurements should be lower by several times, or about 3Â��-5 of the longitudinal
field.

6. The same solenoid quality can be achieved in a sectioned design.
7. The proposed solenoid design looks doable and less expensive than solenoids of low-

energy coolers (per unit length).
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